高中数学必修一知识点归纳总结 数学高中必修一知识点( 二 )


2、圆锥体:表面积:πR2+πR[(h2+R2)的]体积:πR2h/3(r为圆锥体低圆半径,h为其高,
3、a-边长,S=6a2,V=a3
4、长方体a-长,b-宽,c-高S=2(ab+ac+bc)V=abc
5、棱柱S-h-高V=Sh
6、棱锥S-h-高V=Sh/3
7、S1和S2-上、下h-高V=h[S1+S2+(S1S2)^1/2]/3
8、S1-上底面积,S2-下底面积,S0-中h-高,V=h(S1+S2+4S0)/6
9、圆柱r-底半径,h-高,C—底面周长S底—底面积,S侧—,S表—表面积C=2πrS底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h
10、空心圆柱R-外圆半径,r-内圆半径h-高V=πh(R^2-r^2)
11、r-底半径h-高V=πr^2h/3
12、r-上底半径,R-下底半径,h-高V=πh(R2+Rr+r2)/313、球r-半径d-直径V=4/3πr^3=πd^3/6
14、球缺h-球缺高,r-球半径,a-球缺底半径V=πh(3a2+h2)/6=πh2(3r-h)/3
15、球台r1和r2-球台上、下底半径h-高V=πh[3(r12+r22)+h2]/6
16、圆环体R-环体半径D-环体直径r-环体截面半径d-环体截面直径V=2π2Rr2=π2Dd2/4
17、桶状体D-桶腹直径d-桶底直径h-桶高V=πh(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)
高二数学必修一知识点总结
1.1柱、锥、台、球的结构特征
1.2空间几何体的三视图和直观图
11三视图:
正视图:从前往后
侧视图:从左往右
俯视图:从上往下
22画三视图的原则:
长对齐、高对齐、宽相等
33直观图:斜二测画法
44斜二测画法的步骤:
(1).平行于坐标轴的线依然平行于坐标轴;
(2).平行于y轴的线长度变半 , 平行于x , z轴的线长度不变;
(3).画法要写好 。
5用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图
1.3空间几何体的表面积与体积
(一)空间几何体的表面积
1棱柱、棱锥的表面积:各个面面积之和
2圆柱的表面积3圆锥的表面积
4圆台的表面积
5球的表面积
(二)空间几何体的体积
1柱体的体积
2锥体的体积
3台体的体积
4球体的体积
高二数学必修二知识点:直线与平面的位置关系
2.1空间点、直线、平面之间的位置关系
2.1.1
1平面含义:平面是无限延展的
2平面的画法及表示
(1)平面的画法:水平放置的平面通常画成一个平行四边形 , 锐角画成450 , 且横边画成邻边的2倍长(如图)
(2)平面通常用希腊字母α、β、γ等表示 , 如平面α、平面β等 , 也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示 , 如平面AC、平面ABCD等 。
3三个公理:
(1)公理1:如果一条直线上的两点在一个平面内 , 那么这条直线在此平面内
符号表示为
A∈L
B∈L=>Lα
A∈α
B∈α
公理1作用:判断直线是否在平面内
(2)公理2:过不在一条直线上的三点 , 有且只有一个平面 。
符号表示为:A、B、C三点不共线=>有且只有一个平面α , 
使A∈α、B∈α、C∈α 。
公理2作用:确定一个平面的依据 。
(3)公理3:如果两个不重合的平面有一个公共点 , 那么它们有且只有一条过该点的公共直线 。
符号表示为:P∈α∩β=>α∩β=L , 且P∈L
公理3作用:判定两个平面是否相交的依据
2.1.2空间中直线与直线之间的位置关系
1空间的两条直线有如下三种关系:
共面直线
相交直线:同一平面内 , 有且只有一个公共点;
平行直线:同一平面内 , 没有公共点;
异面直线:不同在任何一个平面内 , 没有公共点 。
2公理4:平行于同一条直线的两条直线互相平行 。
符号表示为:设a、b、c是三条直线
a∥b
c∥b
强调:公理4实质上是说平行具有传递性 , 在平面、空间这个性质都适用 。
公理4作用:判断空间两条直线平行的依据 。
3等角定理:空间中如果两个角的两边分别对应平行 , 那么这两个角相等或互补
4注意点:
①a'与b'所成的角的大小只由a、b的相互位置来确定 , 与O的选择无关 , 为了简便 , 点O一般取在两直线中的一条上;
②两条异面直线所成的角θ∈(0 , );
③当两条异面直线所成的角是直角时 , 我们就说这两条异面直线互相垂直 , 记作a⊥b;
④两条直线互相垂直 , 有共面垂直与异面垂直两种情形;
⑤计算中 , 通常把两条异面直线所成的角转化为两条相交直线所成的角 。

推荐阅读